Introducción al Dibujo Técnico
BLOQUE 6
La elipse y la Hipérbola
elementos de la elipse dada su ecuación parte 1
elementos de la elipse dada su ecuación parte 2
Ejercicios
1. Los focos de una elipse son los puntos (-4, -2) y (-4, -6), y la longitud de cada lado recto es 6. hállese la ecuaicon de la elipse y su excentricidad.
2. Los focos de una elipse son los puntos (3, 8) y (3,2) y la longitud de su eje menor es 8. Hallar la ecuación de la elipse, las coordenadas de sus vértices y su excentricidad.
LA HIPÉRBOLA
Una hipérbola es el lugar geométrico de un punto que se mueve en un plano de tal manera que el valor absoluto de la diferencia de sus distancias a dos puntos fijos del plano, llamados focos, es siempre constante.
Elementos de la hipérbola:
Focos: Son los puntos fijos F y F'.
Centro: Es el punto de intersección
de los ejes.
Vértices: Los puntos A y A' son los
puntos de intersección de la hipérbola con el eje focal. Los puntos B y
B' se obtienen como intersección del eje imaginario con la circunferencia que
tiene por centro uno de los vértices y de radio c.
Radios vectores: Son los segmentos
que van desde un punto de la hipérbola a los focos: PF y PF'.
Distancia focal: Es el segmento FF' de longitud 2c.
Eje mayor: Es el segmento AA' de longitud 2a.
Eje menor: Es el segmento BB' de longitud 2b.
Asíntotas: Son las rectas de
ecuaciones: y = -b x ; y = b x
a a
Relación entre los semiejes: c² = a² + c²Primera ecuación ordinaria de la hipérbola. Consideremos la hipérbola de centro en el origen y cuyo eje focal coincide con el eje X, y focos los puntos (c, 0) y (- c, 0) es
x² - y² = 1
a² b²
Si el eje focal coincide con el eje Y , de manera que las coordenadas de los focos sean (0, c) y (0,-c), entonces la ecuación es
y² - x² = 1
a² b²
Informe:
gráfica de la hipérbola dada su ecuación parte 1 y 2
BLOQUE 5
Objetivo.- Aplicar las ecuaciones de la recta y de las cónicas en la resolución de problemas de la geometría analítica.
Ecuación de la recta que pasa por un punto y tiene una
pendiente dada.
Ecuación de la recta dada su pendiente y su ordenada en
el origen.
Ecuación simétrica de la recta.
Forma general de la ecuación de una recta.
1. encontrar la ecuación de la recta
2. encontrar el punto p dado la pendiente
Ecuación de la circunferencia
Definición.- circunferencia es el lugar geométrico que se mueve en un plano de tal manera que se se conserva siempre a una distancia constante de un punto fijo de ese plano.
Informes, ver vídeos
1. ecuación de la circunferencia
2. ecuación de la circunferencia y es tangente a una recta
LA PARÁBOLA
Definición.- una parábola es el lugar geométrico de un punto que se mueve en un plano de tal manera que su distancia de una recta fija, situada en el plano, es siempre igual a su distancia de un punto fijo del plano y que no pertenece a la recta.
Teorema 1. La ecuación de una parábola de vértice en el origen y eje el eje X, es y² = 4px, en donde el foco es el punto (p, 0) y la ecuación de la directriz es x = -p. Si p > 0, la parábola se abre hacia la derecha; si p < 0, la parábola se abre hacia la izquierda.
Si el eje de una parábola coincide con el eje Y, y el vértice esta en el origen, su ecuación es
x² = 4py
Teorema 2: La ecuación de una parábola de vértice (h, k) y eje paralelo al eje X, es de la forma
(y - k)² = 4p(x - h), siendo p la longitud del segmento del eje comprendido entre el foco y el vértice.
Si p > 0 la parábola se abre hacia la derecha; si p < 0, la parábola se abre hacia la izquierda
Si el vértice es el punto (h, k) y el eje de la parábola es paralelo al eje Y, su ecuación es de la forma
(x- h)² = 4p(y - k) Si p > 0, la parábola se abre hacia arriba; si p < 0, la parábola se abre hacia abajo.
Teorema 3: Una ecuación de segundo grado en las variables x y y que carezca del término en xy puede escribirse en la forma
Ax² + Cy² +Dx + Ey + F =0
Informes, ver vídeos
3. hallar la ecuación de la parábola dado su foco y directriz
BLOQUE 4
BLOQUE 4
Destreza: Conceptualizar las diferentes curvas geométricas a través de sus características y elementos.
Objetivo: Construir óvalos, ovoides, elipses, parábolas e hipérbolas mediante la aplicación de procedimientos y técnicas de trazado para ofrecer un resultado gráfico satisfactorio.
1. Curvas geométricas
La hipérbola
Es una curva abierta y plana formada por puntos, cuya diferencia de distancias a dos puntos fijos de un plano, llamados focos, es constante. Por tanto se cumple que r – r’ = VV’ Asíntotas Son las rectas tangentes a la curva en el infinito.
Trazo de una hipérbola conociendo vértices y focos
ver vídeo trazo de una hipébola
Trazo de una parábola mediante haces de proyección
ver vídeo trazo de una parábola
construcción de una elipse con compás conociendo su eje mayor AB = 10 cm
ver vídeo trazo de una elipse por el método de localización de puntos
construir una elipse dados los dos ejes AB = 10 cm y CD = 6 cm
ver vídeo trazo de una elipse por el método de proyección de puntos
1. Curvas geométricas
1.2. Curvas técnicas
Las curvas técnicas tienen
muchas aplicaciones en la resolución de problemas de dibujo técnico, ya sean
éstos provenientes del ámbito del diseño industrial, arquitectónico o gráfico.
Las curvas de este tipo se
configuran mediante la unión de arcos de circunferencia que son tangentes entre
sí, dando lugar a la formación de figuras planas que pueden ser cerradas: óvalo,
ovoide; o abiertas: espirales, evolvente del círculo, etcétera.
1.3. Curvas cónicas
Las curvas cónicas se obtienen al seccionar un cono
de revolución con un plano secante.
Un cono de revolución es un cuerpo geométrico que puede considerarse
engendrado por una línea recta denominada generatriz, que se mueve fija
en un punto alrededor de un eje y con una dirección circular denominada directriz.
Dependiendo de la inclinación del plano respecto al eje
podemos obtener las siguientes cuatro formas:
Si
consideramos el eje vertical, obtenemos:
Circunferencia.- Se obtiene al cortar el cono por un plano horizontal.
Elipse.-
Se obtiene al cortar el cono por un plano oblicuo, de inclinación menor que la
generatriz
Parábola.- Se obtiene al cortar el cono por un plano paralelo a la generatriz
Hipérbola.-
Se obtiene al cortar el cono por un plano oblicuo de mayor inclinación que la
generatriz. Esta curva tiene dos ramas.Parábola.- Se obtiene al cortar el cono por un plano paralelo a la generatriz
La
elipse
Es
una curva cerrada y plana formada por puntos que tienen la propiedad de que la
suma de las distancias de cada uno de ellos a otros dos fijos, llamados focos,
es constante e igual al eje mayor de la elipse. En todos los puntos de la
elipse (por ejemplo el Q2) se cumple:
r +
r’ = ABEs una curva abierta y plana formada por puntos, cuya diferencia de distancias a dos puntos fijos de un plano, llamados focos, es constante. Por tanto se cumple que r – r’ = VV’ Asíntotas Son las rectas tangentes a la curva en el infinito.
La
parábola
Es
una curva plana, formada por puntos que tienen la propiedad de estar cada uno
de ellos equidistante de un punto fijo, llamado foco, y de una recta llamada
directriz. En todos los puntos de la curva, por ejemplo el punto F’, se cumple
que r = r’ El vértice V es el punto medio de OF, distancia existente entre el
foco y la directriz.
Trazo de una hipérbola conociendo vértices y focos
ver vídeo trazo de una hipébola
Trazo de una parábola mediante haces de proyección
ver vídeo trazo de una parábola
construcción de una elipse con compás conociendo su eje mayor AB = 10 cm
ver vídeo trazo de una elipse por el método de localización de puntos
construir una elipse dados los dos ejes AB = 10 cm y CD = 6 cm
BLOQUE 3
Destreza: Construir polígonos, circunferencias y arcos siguiendo instrucciones.
Objetivo: Construir diferentes clases de trapecios, polígonos, circunferencias
y arcos mediante la aplicación de procedimientos y técnicas de trazado para ofrecer un
resultado gráfico satisfactorio.
ACTIVIDADES
- Construcción de trapecios y trapezoides
- Construcción de polígonos regulares y estrellados rectos y curvos
- Trazado de arcos y circunferencias.
- Rectificación
3.1.2 Trazado de un
arco de circunferencia que pasa por tres puntos.
Se trata de
hacer pasar un arco de circunferencia, o bien una circunferencia completa, por
tres puntos (no alineados) que se tienen como datos.
OPERACIONES:
- Se unen los tres puntos, dos a dos, por ejemplo A-B y B-C.
- Se trazan las mediatrices de los segmentos AB y BC.
- El punto O, donde se cortan las dos mediatrices, es el centro del arco solicitado.
- Desde este punto se traza el arco o la circunferencia que deberá pasar por los tres puntos.
- Se unen los tres puntos, dos a dos, por ejemplo A-B y B-C.
- Se trazan las mediatrices de los segmentos AB y BC.
- El punto O, donde se cortan las dos mediatrices, es el centro del arco solicitado.
- Desde este punto se traza el arco o la circunferencia que deberá pasar por los tres puntos.
construcción geométrica paso a paso http://www.euskalnet.net/ibiguri/ abre este vinculo, haz clic en indice, luego en arcos y rectificaciones y selecciona arco de circunferencia (3 puntos)
3.1.3. Hallar el centro de una circunferencia cuando se desconoce el valor del radio
OPERACIONES:
3.1.3. Hallar el centro de una circunferencia cuando se desconoce el valor del radio
OPERACIONES:
Trace la circunferencia y dos cuerdas AB y CD que no sean paralelas. Construya perpendiculares en los puntos medios de cada una de ellas. Prolongue las perpendiculares hasta que se corten en O, O será el centro buscado.
3.1.4 Circunferencia que pase por dos puntos... abrir vínculo
3.1.5 Rectificar
un arco de circunferencia, menor de 90º
Se
trata de hacer la rectificación de un arco de circunferencia con un valor menor
de 90º.
La rectificación trata de poner, mediante
operaciones realizadas con los instrumentos de dibujo, un arco de circunferencia (o una circunferencia completa) sobre
una línea recta.
En este caso, el
arco de circunferencia es menor de 90º.
Se trata por
tanto de determinar la longitud del arco AB y colocarla sobre
una línea recta.
3.1.6 Rectificación de un arco de 90º......abrir vínculo
3.1.7 Rectificación de una circunferencia.
Referencias:
trazado de arcos y circunferencias: https://ibiguri.wordpress.com/temas/circunferencias-y-arcos/arc/
Contreras Arias Pablo Fabián. CONSTRUCCIONES GEOMÉTRICAS. Quito Ecuador
Se
trata de determinar la longitud de una circunferencia y colocarla en línea
recta.
OPERACIONES:
Sobre
una recta cualquiera r se lleva tres veces el diámetro de la circunferencia.
Se
divide el diámetro en 7 partes iguales (p.e.: en la última parte).
A
continuación de los 3 diámetros, se añade 1/7 parte del diámetro. Se obtiene el
punto 4.
trazado de arcos y circunferencias: https://ibiguri.wordpress.com/temas/circunferencias-y-arcos/arc/
Contreras Arias Pablo Fabián. CONSTRUCCIONES GEOMÉTRICAS. Quito Ecuador
BLOQUE 2
Destrezas:- Desarrollar habilidades de trazar lineas con instrumentos
- Deducir y construir trazos geométricos como: perpendiculares, paralelas, ángulos, circunferencias, triángulos, aplicando procedimientos.
Eje integrador: conocer las lineas básicas de la geometría para desarrollar la capacidad de crear y construir con precisión figuras geométricas.
InstrumentosSon herramientas de precisión que cumplen funciones diversas: sirven como instrumentos para tomar medidas o describir circunferencias, como en el caso del compás.
Entre estos elementos: los lápices, las reglas, los rapidógrafos, portaminas,
borradores, escuadras, transportadores, compases, normógrafos, etc.
Ángulo
Es la abertura o separación formada por dos lineas que se cortan o tienen un punto común. Las lineas que forman el ángulo se llaman lados o ramas y el punto en que se encuentran se denomina vértice.
Ángulo
Es la abertura o separación formada por dos lineas que se cortan o tienen un punto común. Las lineas que forman el ángulo se llaman lados o ramas y el punto en que se encuentran se denomina vértice.
Tarea de consulta:
1.
Definir líneas perpendiculares, paralelas,
secantes y segmento; adjunte gráfica en cada caso.
2. Definición de ángulo y tipos de
ángulos; según su medida, su posición, su suma, ángulos entre paralelas y una recta transversal. ángulos en la circunferencia (inscrito, interior y exterior), y en un polígono regular (central, interior y exterior). Adjunte gráficas.
saber mas...
ejercicios interactivos de tipos de ángulos
ejercicio interactivo de bisectriz
saber mas...
ejercicios interactivos de tipos de ángulos
ejercicio interactivo de bisectriz
LAMINA 2 En una lamina reproduzca las imágenes de paralelas y bisectrices de un angulo recto.
Referencias:
Washington Cabezas R. Dibujo Técnico. Quito
Washington Cabezas R. Dibujo Técnico. Quito
PARALELAS
Se llaman paralelas a dos o más
líneas que siguen una misma dirección en todos sus puntos y que por más que se
prolonguen no llegan a unirse. Estas pueden ser rectas, curvas mixtas,
angulosas u onduladas.
En el dibujo geométrico
tenemos dos sistemas para el trazado de paralelas, el uno con la regla y la escuadra o con dos escuadras y el
otro con la regla o escuadra y el compás
LAMINA 3 En una lamina reproduzca las imágenes de paralelas y bisectrices de un ángulo.
DESTREZA
- Reconocer y definir los elementos de la circunferencia para su aplicación en los trazos geométricos.
- Reconocer y construir las clases de triángulos y sus respectivas lineas y puntos notables
- Conocer y construir diferentes clases de polígonos de acuerdo a procedimientos.
Consulta 2.
- Circunferencia: definición y elementos
- Triángulos: definición, clasificación, puntos y lineas notables
saber mas...
ejercicios interactivos de circunferencia ejercicios interactivos de circunferencia
ejercicios interactivos de triángulos ejercicios interactivos de triángulos
Escoge la opicon corecta, resuelve e imprime ejercicios interactivos de triángulos
ejercicios interactivos de circunferencia ejercicios interactivos de circunferencia
ejercicios interactivos de triángulos ejercicios interactivos de triángulos
FIGURAS PLANAS Y LOS SÓLIDOS
TRIÁNGULOS:
El triángulo es el polígono de menor
número de lados, pues está limitado por tres líneas, de ahí, que un triángulo
se determina por tres puntos que no están en línea recta.
Clasificación.
Según
los ángulos que forman el triángulo, éste se clasifica en:
1)Triángulo
rectángulo es el que tiene un ángulo recto, los
lados que forman este ángulo se llaman catetos, y el lado opuesto al ángulo
recto, hipotenusa.
2)Triángulo
acutángulo es el formado por ángulos agudos.
3)Triángulo
obtusángulo es el que tiene un ángulo obtuso.
Estos dos últimos
triángulos se llaman oblicuángulos porque sus
ángulos están constituidos por líneas oblicuas.
Según la igualdad de
los lados el triángulo se clasifica en:
4)Triángulo
equilátero es el que tiene sus lados y ángulos
iguales.
5)Triángulo
isósceles es el que tiene sus dos lados iguales.
6)Triángulo
escaleno es el triángulo que tiene los tres lados
desiguales.
Propiedades
de los triángulos.
- La suma de los dos lados de un triángulo es mayor que un tercero.
- En los triángulos equiláteros e isósceles, la altura divide a la base en dos partes iguales
- En todo triángulo, a lados iguales se oponen ángulos iguales.
- Al mayor lado se opone el mayor ángulo.
- La suma de los tres ángulos de un triángulo es igual a 180°
CUADRILÁTEROS.
Cuadrilátero es
el polígono que tiene cuatro lados. Hay tres clases
de cuadriláteros: el paralelogramo, el trapecio y el trapezoide. La suma de los ángulos interiores de un cuadrilátero es igual a 360°.
1) Paralelogramo es
el cuadrilátero que tiene sus lados opuestos
iguales y paralelos. El paralelogramo puede ser rectángulo, cuadrado rombo y
romboide.
- Rectángulo tiene sus ángulos rectos y sus lados iguales y paralelos de dos en dos.
- Cuadrado tiene los cuatro ángulos rectos y sus cuatro lados iguales y paralelos
- Rombo es el que tiene los lados iguales y sus ángulos oblicuos iguales de dos en dos.
- Romboide tiene sus lados desiguales y sus ángulos oblicuos iguales de dos en dos, fig.55
2) Trapecio es
el cuadrilátero que tiene sólo dos de sus lados paralelos y desiguales,
llamadas bases. Hay diferentes clases de trapecios.
- Trapecio isósceles es la figura que tiene iguales los dos lados no paralelos y los dos lados paralelos desiguales.
- Trapecio rectangular es la figura que tiene uno de los lados perpendicular a las bases.
- Trapecio escaleno es la figura que tiene sus lados y ángulos desiguales.
3) Trapezoide es la figura que tiene
sus ángulos desiguales, también sus lados son desiguales y no paralelos.
CIRCUNFERENCIA.
Circunferencia es una curva formada por
puntos, situados en un plano, equidistantes de un punto interno, llamado
centro.
Cuerda es el segmento que une dos puntos
cualesquiera de la circunferencia.
Arco es una porción de la circunferencia,
limitada por dos puntos, llamados extremos del arco.
Diámetro es la cuerda que pasa por el
centro del círculo.
Radio es la línea que une el centro del
círculo con un punto cualquiera de la circunferencia.
Secante es la recta que corta la
circunferencia en dos puntos.
Tangente es la recta que toca la circunferencia
en un solo punto.
Sagita es la perpendicular que comienza
en el centro de la cuerda y termina en un punto de la circunferencia.
LAMINA 4
Construcción de triángulos y cuadriláteros. segmentos R=5 cm; S=3 cm y T=2 cm
Construir un cuadrado conociendo su lado R=5 cm
Trace AB igual a R, levante una perpendicular en el extremo A. Con la abertura del compás igual a AB, centrando en A, describa el arco que determinará sobre la perpendicular el punto C. Con el mismo radio, centrando respectivamente en C y en B, trace los arcos que se cortaran en D. Uniendo D con C y con B, obtendrá el cuadrado pedido.
Construcción de triángulos y cuadriláteros. segmentos R=5 cm; S=3 cm y T=2 cm
Construir un cuadrado conociendo su lado R=5 cm
Trace AB igual a R, levante una perpendicular en el extremo A. Con la abertura del compás igual a AB, centrando en A, describa el arco que determinará sobre la perpendicular el punto C. Con el mismo radio, centrando respectivamente en C y en B, trace los arcos que se cortaran en D. Uniendo D con C y con B, obtendrá el cuadrado pedido.
EVALUACIÓN
Conteste falso o verdadero
Conteste falso o verdadero
El triángulo escaleno tiene sus tres lados iguales ................
El triángulo isósceles tiene los dos lados iguales y
uno desigual ..................
El triángulo obtusángulo tiene un ángulo agudo y dos obtusos ..................
El triángulo obtusángulo tiene un ángulo agudo y dos obtusos ..................
El triángulo equilátero tiene todos sus lados iguales ................
El triángulo acutángulo tiene un ángulo obtuso y dos
agudos ...................Escoge la opicon corecta, resuelve e imprime ejercicios interactivos de triángulos